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ABSTRACT:

This paper discusses the current methods for vehicle self-localization and compares previous findings to the use for urban public
traffic vehicles. In specific, requirements for autonomous buses approaching a bus stop are defined. An autonomous system capable
of reliable vehicle self-localization running in real-time in a city scenario shall be developed in a future work based on this paper.
The comparison of filter-based estimation and graph-based optimization techniques shows that the latter suits the the automated
approach to a bus stop in an urban environment the best. Based on these findings, a concept for self-localization of public transport
vehicles equipped with a variety of imaging sensors with the help of a digital high definition map is presented. A current method
is shown and a concept of improving the localization by inferring semantic information into landmark detection by low-level data
fusion is provided. Validation and verification of the proposed fusion approach have to be carried out in the future, but a validation

scenario is presented in this work.

1. INTRODUCTION

The ability to guide automated vehicles on well-structured
streets and highways has been demonstrated and tested for
several years now. (Geiger et al., 2013), (Cordts et al.,
2016), (Fickenscher et al., 2018) In these situations, definite
and characteristic features for localization are present and
well-defined road markings ensure the lateral guidance of
vehicles. In contrast to a highway scenario, the requirements for
localization accuracy on the one hand and for resolution of high
definition (HD) maps on the other are more critical in urban
environments. Complex lane guidance as well as a multitude
of ambiguous landmarks hinder an accurate estimation of the
vehicle’s pose. The recognition of traffic and particularly
vulnerable road users are more difficult due to this ambiguity.
Also the guidance of a bus in a city environment is a scenario
only few work has focused on (Bouraoui et al., 2011) and
mostly focuses on small transport vehicles instead of city buses.

To drive in urban environments, there are higher requirements
for positioning accuracy, reliability and run-time. To be safe
and stick to the defined road boundaries, a global positioning
accuracy of 10 cm is required according to (Levinson and
Thrun, 2010). As this accuracy was stated for cars, this paper
compares existing approaches and gives an estimation for the
needed accuracy for city buses. Due to direct interaction with
pedestrians and other vulnerable road users, the autonomous
system must run in real-time and should be fail-safe.

To cope with these conditions, modern cars are equipped
with various sensors to perceive objects and measure the
drivable area and its environment. A combination of different
sensors specially designed for distance measurement, like
LiDAR (Light Detection and Ranging), and ones for angular
measurement, like cameras, ensure a complete environment
recognition. In addition to mobile sensory installed on the
vehicle, a pre-built HD map including e.g. pole-like objects,
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road markings or curbs and their respective geometries as well
as shapes of buildings shall be used for self-localization. Future
work has to research, if special landmarks like bus bays or
signalization of bus stops must be added and classified in a
special way for the validation test case with a city bus or if they
can easier be used for relative than for global localization.

Therefore, to address bespoke requirements for buses in
urban environments, an autonomous system capable of reliable
vehicle self-localization running in real-time in an urban area
shall be developed. For recognition and association, the usage
of machine learning methods will be evaluated in future work.
The validation and verification of the presented method will be
conducted by simulation and real-world scenarios in the field
of automated city buses. The use case presented by this work
is localization with a given HD map, so the focus of presented
material is mainly on self-positioning in this map instead of a
combined approach of localization and mapping.

A concept to achieve a reliable real-time localization in urban
areas and a free space estimation based on the perceived
environment data will be presented in this paper. By the
evaluation of sensor fusion and usage of diverse sensor
types, a positioning accuracy of 5 cm relative to the curb
is expected to be reached. Based on this work, future
investigations shall evaluate stages of data fusion at different
perception levels to define the optimal fusion, either on raw
data level or previously detected features or object. Global
positioning error and accuracy of the localization system
shall be compared to measurements of a differential global
positioning system (DGPS) in combination with an inertial
measurement unit, to validate the calculated accuracy against
a reference system. Furthermore, the static environment
perception shall be complemented with dynamic objects to
analyze the current scene and possibly estimate hazards. Based
on static and dynamic objects, the driving maneuver shall be
adapted to the scenario. Object recognition is evaluated by
placing objects or posing dynamical situations, where persons
intruding the test vehicle’s action space and real situations.
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2. SYSTEM REQUIREMENTS

A broad overview over the challenges and open questions in
the field of simultaneous localization and mapping (SLAM)
is given in (Cadena et al., 2016) as they evaluate different
methods by the main aspects “robust performance, high-level
understanding, resource awareness, and task-driven inference”.
In addition to that, (Bresson et al., 2017) show the current
state of the art focusing on accuracy, scalability, availability,
recoverability, updatability, dynamicity for SLAM Methods
used in autonomous driving. These review papers give a good
introduction to the topic and so only a few selected papers that
are important for our future work will be further investigated
here.

The measures introduced in these review papers are taken into
account for the development of localization methods used in
this work and define a reasonable initial set of requirements.
These will be evaluated with the used sensor and controller
setup. To validate the localization quality of the developed
method, the localization system shall be included into a
self-driving test vehicle in form of a city bus. As there are
requirements in Germany for local passenger traffic in terms
of barrier-free usage of busses and vehicle control, these will
be taken into account for the scenario requirements. The
maximum distance where the entry into a bus is specified
barrier-free is 5 cm and manageable is 10 cm according to (DIN
18040-3, 2014). This constraint is valid for the relative position
from bus to the curb and does not necessarily have an impact
on the global localization accuracy needed in city driving. As
the bus is wider than a passenger car, the global accuracy must
be constrained to fulfill the requirement of driving according
to lane markings. Future work will research how accurate the
position control system of the automated bus can follow a given
trajectory and evaluate the combined error of localization and
guidance to not drive off the marked lanes.

As an initial estimation, (Levinson and Thrun, 2010) assume
a global positioning error of 10 cm to be feasible for a
passenger car, whereas (Schlichting, 2018) was able to achieve
a localization quality of 5 cm without any sensor data fusion.
With these insights on current research, future work must check
if on the one hand the assumption of about 10 cm global
positioning accuracy also holds for city buses and on the other
hand if this localization quality can be achieved within the given
scenario.

3. LOCALIZATION METHODS

Typically, the localization task for mobile robots or automated
vehicles should be divided into two distinct systems according
to (Grisetti et al., 2010):

e A frontend that evaluates data and odometry inputs
while knowing the according sensors and their respective
measurement quality. The main task of the frontend is
to present sensor-agnostic description e.g. in the form of
object lists with covariance matrices to later be used in the
backend.

e A backend to estimate at least the current position of the
robot based on the given frontend output. Most commonly
used implementations of a backend are a filter based
approach like e.g. (Thrun et al., 2001) or (Stef3, 2017) or
a graph based optimization as in (Wilbers et al., 2019c) or
(Gao et al., 2018) which are later explained in more detail.

Having this division of tasks, frontend and backend should be
modularly developed to be easily exchangeable. Furthermore
the interface must be defined beforehand to ensure this
exchangeability. If a landmark based approach is used for
localization, parts of the same frontend can be used for a
particle filter backend as in (Ste3, 2017) and at the same time
for a graph-based solution developed in (Wilbers et al., 2019b).

Within the localization system, there is a differentiation of
methods. Either a full SLAM method is realized to localize
a robot in a map built up at run-time or there is already a
given map to localize in. As the use case in this work is a
single localization task with a given HD map, the focus of
the presented material is on the self-positioning in this map
instead of on a combined approach of localization and mapping.
Further material is shown and, if appropriate, discussed and
evaluated for usage in this work’s problem case.

To give a proof of concept, the PhD thesis of (Schlichting, 2018)
is further investigated, as a quite similar topic is presented.
Laser scanner data is evaluated in an urban environment and
the following approaches for feature extraction are presented
and later used for localization to estimate the position error:

1. Landmarks (pole-like objects and planes) are extracted
from the laser raw data and later used for self-localization.
The descriptor from (Brenner, 2009) is used to describe
poles in this case.

2. Neural networks are used to extract features with an
autoencoder pattern. A global localization is achieved by
matching a sequence of feature patterns with reference
patterns in a sliding-window search.

3. A scan image is created from multiple laser scans and
correlated with a feature map consisting of intensity and
height values. This correlation is later included into a
method for change detection.

Different state-of-the-art laser scanners are evaluated within
each of the different methods to compare the resulting
localization accuracies. The mean standard deviation with
method (1) for poles and planes detected is 6 cm for a Valeo
Scala and 8-10 cm for a Velodyne VLP-16. The root mean
square error (RMSE) for method (2) is greater than 1m and not
as accurate as the landmark based approach. Artificially built
up scan images of method (3) are compared to the previous
measurement runs and lead to a RMSE of 5 cm and even better
in inner-city scenarios (3 cm). With the knowledge of this
non-fused approach, the requirement of a positioning accuracy
of 5 cm is feasible and can be applied for this work.

3.1 Landmark Detection

For self-localization, the environment has to be analyzed,
labeled and classified to extract landmarks, i.e. static objects
that are detectable both at run-time and marked in a map.
The landmark detection is usually executed in the localization
frontend to be exchanged easily later. Given there is an either
built-up or previously constructed map, landmarks have to be
recognized as objects and then co-registered within the map.
For recognition and association, the usage of machine learning
methods shall be evaluated in future work. Here we will only
focus on landmark based localization, whereas there are papers
using direct features of a camera images (Gao et al., 2018) or
of a laser point cloud (Hungar et al., 2019). As these methods
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require to build up a feature based map instead of a landmark
map as stated above, these methods are currently not taken into
account for further development of this concept.

As dynamic object are not part of a map, these have to
be excluded from the map-matching. They would only
lead to wrong correlations or false-positive measurements.
Furthermore, changes in the static map are to be detected and
evaluated in accordance with the local measurements. This can
be done with change detection methods as in (Gehrung et al.,
2017). These changes can then be used for a map retraining
step. For the localization itself, neither dynamic objects nor the
static changes will be taken into account, as only static objects
can be co-registered in (fused) sensor data and HD map.

Landmarks have to be found in sensor images at run-time. As a
laser scanner provides both, very accurate distance and angular
measurements, each point’s position in the scan can easily be
calculated in a local coordinate frame. Geometrically clustering
is enabled by these properties, so LiDAR is used in (Wilbers
et al., 2019b) for detection of pole-like and plane landmarks.
Landmarks to be detected can be classified as follows:

e Pole-like objects like posts, traffic signs, trees, traffic lights
etc.

o Planes like building walls
o Corners describing the intersection of two planes
e Lane markings with complex geometries

The geometric reference of all these given landmarks is specific
to the used localization framework. The framework used as a
basis is further described in Section 4.2.3.

3.2 Filter-based approaches

A localization approach utilizing a filtering method as backend
estimates the current position from a priori knowledge and
current measurements. Within this solution, only the last pose
is estimated what makes the approach slim and runable at
real-time conditions. (Grisetti et al., 2010) call a system capable
of running in these conditions “online SLAM”.

To give an example, (Dellaert et al., 1999) show an
algorithm for Monte-Carlo localization (MCL) and combine
the advantages of grid-based Markov localization with the
efficiency and accuracy of Kalman Filter techniques. (Thrun et
al., 2001) improve the MCL approach by using a particle filter
for improved accuracy.

In another approach, (Levinson et al., 2007) build up a
2D occupancy grid storing infrared remittance information.
They used inputs of a global navigation satellite system
(GNSS), an inertial measurement unit (IMU), wheel odometry
measurements, LiDAR data and the GraphSLAM algorithm
by (Thrun and Montemerlo, 2006). Furthermore, they are
using a particle filter to localize in that map. They re-use
their 2007 method in (Levinson and Thrun, 2010), but utilize
a probabilistic grid instead of an infrared remittance grid also
using GraphSLAM from (Thrun and Montemerlo, 2006).

In contrast to a full SLAM approach, (SteB, 2017) use
a landmark-based method with a pre-built map to only
self-localize in it. With a Particle Filter, they use prior
knowledge from previous pose estimations and then randomly
sample a new set of particles, of which the sample matching
the current landmark measurements the best is declared as the
current pose estimate.

3.3 Graph-based approaches

Instead of relying on a filter-based localization, a graph-based
approach optimizes multiple poses built up in a directed
factor-graph at a time. Hereby, old measurements can be used to
infer new knowledge also on old poses and landmark positions,
which also improves the current pose estimation. Because
not only the current, but all poses and all measurements are
optimized, (Grisetti et al., 2010) call the principle ”full SLAM”,
although it has to compensate the higher cycle time when
running on a robot or automated vehicle. (Bresson et al., 2017)
define a graph-based optimization as the most suitable variant
of SLAM for autonomous driving. Not only the accuracy is
higher in this approach, but also a deterministic method is
preferable for functional safety in autonomous driving. With
this method’s improved accuracy, a map retraining without
worsening its quality is possible by acceptance or rejection of
measurements by cars with adequate sensory.

A tutorial on graph-based SLAM is given in (Grisetti et
al., 2010) that explains the basic principles for graph-based
localization. Implementing the proposed method, (Merfels
and Stachniss, 2017) infer a novel approach to build up a
sliding-window pose-graph to estimate the pose history with
multiple prior pose estimates in real-time (20Hz). These
estimates origin amongst others from a particle filter based
solution of the localization problem by (Stel, 2017). The
introduced Landmark Based Localization (LBL) together with
the PoseGraphFusion (PGF) will also be the base for our further
work due to the following advantages:

e Various sensory as input handled by a localization frontend

e Optimization problem is solved as least-squares estimation
with g2o presented in (Kiimmerle et al., 2011)

e The state vector includes as well vehicle as landmark poses
and vehicle odometry estimates in a directed pose-graph
leading to a sparse information matrix for optimization

e Resource-adaptation and marginalization are shown in
(Wilbers et al., 2019c)

(Wilbers et al., 2019a) state the differences of a Particle Filter
based localization and a sliding-window graph based algorithm
for localization for automated vehicles. In the paper, they are
focused on online localization with the possibility to refine the
map and also adding landmarks to the graph. Experiments were
shown to estimate (i) accuracy, (ii) adaptive behavior in terms
of computational resources, and (iii) benefit of estimating old
poses.” An approach to use a PID Controller for limiting the
size of graph is shown and validated. This ensures that the
method fulfills run-time requirements. They propose to use a
sliding-window optimization approach for localization because
of the higher accuracy which is most beneficial for localization.

An algorithm for a pose-graph optimization for self-localization
based on third-party HD maps is shown in (Wilbers et al.,
2019b). Only the localization is focused instead of the mapping.
The map will not be changed to avoid mapping errors due to
localization errors. The method must run in (near) real-time, so
multiple ways to constrain run-time are shown:

e sparsify landmarks and poses

e use sliding window (discard or marginalize)
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The stages of the Graph Based Localization (GBL) are
discussed in their paper and executed in the following order:

1. Landmark Detection
2. Local Association
3. Map Matching

4. Temporal Smoothing

First of all, the landmarks are detected in the local frame.
This measurement is connected to the vehicle pose closest to
the measurement time. Afterwards, multiple measurements
of different timestamps are associated to one cluster with
covariances to limit the numbers of optimization variables.
With the use of the factor graph, landmarks that are not
detected in every timestep from its first detection can be used.
Unlike a standard ICP approach by (Besl and McKay, 1992),
former estimates can improve the current estimation. These
local clusters are then matched with the previously given high
detailed map. Using temporal smoothing means re-adjusting
previous map matches. l.e. associations of measurements
and map landmarks are re-evaluated and changed or removed
if the match was falsely set up. This not only improves the
positioning quality but also makes the system aware of previous
errors. In Section 4 we use this method and integrate a low-level
sensor data fusion to further improve the localization accuracy
to enable map retraining without worsening the map’s quality.

4. PROPOSED METHOD

Facing the questions for autonomous driving in urban areas,
in this section a method is presented to give an estimation
of the needed and possibly reachable accuracy. First of
all the usage of different sensor types is shown and the
principle of low-level sensor data fusion is explained. The
first milestone will be to evaluate if a low-level sensor data
fusion improves the localization system’s accuracy and which
combination of sensors improves accuracy the most. To state an
example, the combination of a angle-measuring sensors and a
distance-measuring sensor is shown. Figure 1b and 1b illustrate
this example with a centered camera and a 360° laser scanner
on the side.

After this short introduction and evaluation of requirements for
the sensor setup, the method to be used will be shown in more
detail. As a basis, the sliding-window pose-graph optimization
shown by (Wilbers et al., 2019b) is used for localization,
transferring their knowledge on localization in passenger cars
to the environment of autonomous bus driving. The current
method will be described and the planned improvement inferred
by our future work will be discussed.

4.1 Sensor requirements

The method by (Wilbers et al., 2019b) uses a graph-based
optimization to estimate the current pose based on odometry
and sensor measurements. To perceive the environment and
detect landmarks, mainly the laser scanner is used for poles,
surfaces and corners. The sensor setup used for our validation
setup contains cameras for object detection with a field of view
(FOV) of 120° and a top-view system with 190° FOV cameras.
Additionally a 360° laser scanner and long-range radars will
be used to perceive the environment in a redundant way. For
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Figure 1a. Top-down view of an exemplary sensor setup
at the test vehicle’s front for low-level data fusion of
camera (center) and LiDAR (right, at the mirror). The
measuring area of the respective sensor is highlighted and
their FOV is marked by an arrow.

Figure 1b. Sensor setup at the test vehicle’s front for
low-level data fusion of camera (center) and LiDAR (top)
as seen from the side

safety features, an ultrasonic sensor system will be used to
avoid collisions with obstacles. Each of the sensors is at least
able to provide an object candidate list.

To improve the amount of found landmarks and the robustness
of the detection, a low-level sensor data fusion should provide
a point cloud where each point is signed with a class label
provided by a semantic segmented camera image. To get the
information from the camera image to the laser point cloud
there are some pitfalls:

e Camera and laser scanner are not in the same place
and axis, so their relative position has to be accurately
calibrated beforehand

e Different measurement principles of passive sensors like
the camera and active sensors like LiDAR lead to the
challenge that not every data point in the one sensor image
has a corresponding data point in the other sensor’s data.

e Some positions lay in the FOV of one sensor but not of
the other because of geometrical restrictions given by the
position as in Figure 1b.

o There might be occlusions of visible space because of the
parallax effect although the position is in both FOVs.
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To show the basic principle of low-level sensor data fusion,
an exemplary sensor configuration between one camera and
one laser scanner is provided. Figure la shows the setup as
seen from the top and Figure 1b as seen from the right of our
test vehicle. Figure la shows that a forward-looking camera
should be combined with a laser scanner at the right outer
mirror covering a 360° field that is obstructed by the bus itself
in the back-left. In Figure la the laser scanner’s remaining,
unobstructed FOV is highlighted in gray. The camera image
is facing forward and not obstructed. Points that can benefit
from the sensor fusion need to be contained in the camera’s
FOV indicated by acam and the laser scanner’s FOV indicated
by aripar in Figure la.

An exemplary superposition is shown by two cones originating
from each sensor with their respective angular resolution (e.g.
dcam)) and forming an intersection volume Vipers. With this
info we can already see, that the scanner’s whole point cloud
cannot be classified by the camera at once. Because the LIDAR
system will be attached to the outer mirror of the bus, it will
be mounted higher than the camera and has a bigger blind area
to the front than the camera. In this case, the camera’s FOV is
enabling feature detection in areas, that the laser cannot even
see. Future work should evaluate, if the labeling in this field is
feasible or can be masked to improve run-time.

4.2 Localization routine

To evaluate the presented research questions, we propose the
concept shown in Figure 2. This method mostly uses the work
presented by (Wilbers et al., 2019b) improved by a low-level
sensor data fusion approach as

red in section 4.1. The proposed method shall be developed
for and tested in an automated test vehicle. The results shall
be used to answer our proposed questions for accuracy and
robustness. The developed system is further divided into
localization frontend and backend as stated in section 3 and
should be discussed briefly. Except the map retraining part, the
original work is also presented in (Wilbers et al., 2019b).

The process is divided into the four parts

1. Data Capture
2. Low-Level Data Fusion
3. Localization Frontend

4. Localization Backend

where the data capture step is handling all the pre-conditions
and the supply of respective sensor data and their
pre-processing.  Boxes represent outputs, while rounded
boxes represent functions or processes. Stacked boxes signify
multiple outputs over time, e.g. multiple images from the
same camera, while single boxes show a accumulated state
using multiple measurements from prior time steps. From
that point, the automated system can use the given inputs for
localization. Following, the second part is the earlier discussed
low-level sensor data fusion using only raw inputs from the
respective sensors. In this section we will focus on the fusion
of a camera image and a raw laser scan, although other sensors
can be used in a later approach. In addition to the previously
provided sensor raw data, the fused output can then be used in
the sensor-aware localization to find landmarks and build up a
pose-graph as described in (Wilbers et al., 2019b). This graph

Data Capture
(4.2.1) | Odometry J
Calibration | HD Map J—
Data | Scene l_
| Low-Level 1
Data Fusion
(4.2.2)
—{ Point Cloud Labelling |
'y
| Labelled Point Cloud ||
| Localizaton v '
Frontend
(4.2.3) Landmark Detectors
Pole- L-
[ like ][Surface] [Corner][Shape]
-
| Landmarks (2D) m
]
[ Local Association ]-—
]
| Local Landmark Clusters |
L]
[ Map Matching ]-
L]
| Matched Landmark Clusters |
L]
[ Association Smoothing ]
L]
| Pose-Graph with Landmarks |-—
Localizaton
Backend [ Graph Optimization ]
(4.2.4) ¥
| Optimized Pose-Graph |
¥ ]
| Current Pose | [ Map Retraining]
¥ L]
[Pose Publication] | HD Map Update |
Autom. System

Figure 2. Abstract concept on vehicle self-localization of
a city bus in an urban environment using a high definition
map, diverse sensor types, low-level sensor data fusion
and optimization of a pose-graph including landmarks.
This concept is based on the work by (Wilbers et al.,
2019b), our impact is highlighted in gray.

representation is then transferred to the localization backend,
where it is optimized with the g2o0 framework by (Kiimmerle
et al., 2011). The final optimized pose-graph is used to provide
the latest pose to a module planning the trajectory for the next
autonomous maneuver and to optimize the map and detect
changes in the static environment.
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4.2.1 Data Capture

The first part in the presented concept takes care of all needed
conditions. Not only there must be a previously recorded
and labeled high definition map, but also all sensors must be
extrinsically and, if appropriate, also intrinsically calibrated
and the calibration data must be available at run-time. In our
use case, the used map will be a pre-built third party HD
map where only a localization has to be conducted. Given
all these pre-conditions, the scene is perceived by the sensors,
mainly camera and laser scanners. Other sensors like radar or
ultrasonic sensors will be added to the perception system if
appropriate. As the error of standard GNSS systems is very
high in urban areas, e.g. due to occlusions by high buildings,
this sensor input is ignored. (Wilbers et al., 2019b) show
that a fusion can also corrupt the estimation as a integration
of very inaccurate GPS position worsens the final positioning
error. Each module provides their raw data using the known
calibration data in form of an image or a raw scan to the
next module. In particular for the laser scanner output, it
has to be defined, that the output is not yet transferred into a
3D or geodetic space, but still has the form of [vertical scan
line, horizontal scan line, distance] to be used by the next
functions. This comes in handy to use convolutional neural
network (CNN) on laser raw data as on camera images.

4.2.2 Low-Level Data Fusion

The principle of low-level sensor data fusion is shown
exemplary by the combination of camera and laser data. The
approach of combining information of these sensors can be
performed in multiple ways. The first option is to detect object
with the camera and confirm or reject them by fusion with laser
objects. This approach would be an object fusion instead of
a low-level data fusion. On the other hand, each pixel of the
camera image could be augmented with an according distance
measurement from the laser scanner. In this case, there would
be the possibility to overcome the problem of the camera not
having depth information on single frame measurements.

As the LiDAR system is currently defined as the main sensor by
(Wilbers et al., 2019b), we want to present a method projecting
the camera image on the laser scan. With that we can use either
pre-trained deep CNNs like for example DeepLabv3 (Chen et
al., 2018) or a9 self-trained neural network better tailored to
our use case to semantically segment the given camera image
and then assign the found class labels to the laser scan points.
To use the information from the camera in the laser point cloud,
correspondences have to be found. For the labeling process, the
calibration data of both sensors has to be used to know their
rotation and translation in the vehicle coordinate frame. Due
to the sensors not being located in the same position, situations
may occur where in one sensor’s scan, given points are visible
that are obstructed by an object in the other sensor’s data. In
this case, a robust labeling cannot be performed and should be
either prevented or solved by a model based approach. These
approaches have to be defined and then developed by future
work.

4.2.3 Localization Frontend

Being able to use all raw sensor inputs and preprocessed or
fused sensor data, the localization frontend’s main task is to
find landmarks and link them to the current pose estimate.
The procedure used is shown in (Wilbers et al., 2019b), but
adapted to the use case of automated bus driving in urban areas.
Landmarks are defined as representations of objects, that can
be possibly detected by multiple sensors and are defined and

Sensor type Function
Top-View Camera

Front Camera

Detection of lane markings and curbs
Detection of dynamic objects and
lane markings

Pedestrian recognition

LiDAR Object detection
Free space estimation

Radar Detection of dynamic objects
Odometry input

Ultrasonic Near field observation and safety

Table 1. Different sensor types integrated to an
autonomous test vehicle for this works validation scenario

recognizable in a HD map, in our case a 2D-representation with
additional information, e.g. object type, height and skew of
the respective road element. Landmarks that can currently be
evaluated are pole-like objects as a single 2D-point, a surface
represented as a line consisting of two 2D-point and more
complex structures with multiple points. Each point is also
attached with covariances representing their uncertainty. Found
landmarks from different time steps are then locally associated
in a vehicle-relative coordinate frame. Known odometry is used
to propagate old measurements to the current time step and
enable the association process. The found association clusters
are then matched with the given HD map. The connections
from local cluster to map landmark are afflicted with errors,
that are minimized later. The matches are evaluated at each
time step and can be re-organized if there is a major assumption
error in the current graph. After that step, the pose-graph
is build up with all pose-, odometry-, measurement- and
matching-assumptions as described in (Wilbers et al., 2019b).
This graph is then provided to the localization backend.

4.2.4 Localization Backend

The sensor-agnostic localization backend solves the given
weighted least squares problem by minimizing all errors for the
assumptions declared in the graph as in (Wilbers et al., 2019b).
From this optimized pose-graph the last node is the estimate for
the current pose and the backend provides this information to
the trajectory planner module of the automated system. On the
other hand, the graph also holds the positions of all detected
landmarks over time with all corresponding map landmarks.
With the localization system becoming more accurate, it might
be beneficial to re-estimate the position of landmarks in the
HD map. An approach for validation of landmark matches and
map-retraining shall be developed in future work.

5. VALIDATION SCENARIO

The localization quality of the proposed method will be
evaluated using a city bus equipped with diverse sensors
as shown in Table 1, computing units and actuators for
autonomous maneuverability. In the given use case, the test
vehicle should approach a bus stop autonomously, swerve into
the bay and come to a full stop safely. As there is no bus already
set up with all the sensors and actuators needed for carrying
out experiments, no validation of the states procedures can be
shown here.
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While in manual mode, the system has to recognize the bus
stop and estimate the free space for the maneuver. After
identification, the driving task is provided to the autonomous
system, which localizes itself with the help of landmarks
and calculates a collision-free trajectory into the bay. While
executing the driving task, collisions with static and dynamic
objects have to be prevented.

Furthermore, there are requirements for local passenger traffic
in terms of barrier-free usage of buses and vehicle control. The
maximum distance for which the entry into a bus is specified
manageable for wheelchair users is 10 cm (DIN 18040-3,
2014). Amongst others, these requirements will be taken into
account for the whole system in addition to the previously
defined system requirements.

6. OUTLOOK TO NEXT STEPS

In this paper we presented differences of particle filter and
graph-based localization methods and proposed a concept for a
localization pipeline usable for public passenger traffic in urban
areas. Future work wants to focus on different stages of sensor
fusion (raw data fusion and/or object fusion) and evaluate when
it is feasible to use a fusion approach or not. Another focus of
this work should be the evaluation of map-retraining methods
for a full-SLAM approach with continuous updates on the
global map. For that the reliability of change detection has to be
ensured and an update principle has to be presented. Not only
the data structure for updates but also the impact on the map
and other vehicles will be shown by this work.
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