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ABSTRACT: 
Currently, enhanced types of active range imaging devices are available for capturing dynamic scenes. By using intensity and range 
images, data derived from different or the same range imaging devices can be fused. In this paper, an automatic image-based co-
registration methodology is presented which uses a RANSAC-based scheme for the Efficient Perspective-n-Point (EPnP) algorithm. 
For evaluating the methodology, two different types of range imaging devices have been investigated, namely Microsoft Kinect and 
PMD [vision] CamCube 2.0. The data sets captured with the test devices have been compared to a reference device with respect to 
the absolute and relative accuracy. As the presented methodology can cope with different configurations concerning measurement 
principle, point density and range accuracy, it shows a high potential for automated data fusion for range imaging devices. 

 

1. INTRODUCTION 

The capturing of 3D information about the local environment is 
still an important topic as this is a crucial step for a detailed 
description or recognition of objects within the scene. Most of 
the current approaches are based on the use of image or range 
data. By using passive imaging sensors like cameras, the 
respective 3D information is obtained indirectly via textured 
images and stereo- or multiple-view analysis with a high 
computational effort. These procedures are widely used, but 
they depend on scenes with adequate illumination conditions 
and opaque objects with textured surface. Besides, the distances 
between sensor and object, between the different viewpoints of 
an imaging sensor and between the sensors of the stereo rig, in 
the case of using a stereo camera, should be sufficiently large in 
order to obtain reliable 3D information.  

In contrast to the photogrammetric methods, terrestrial laser 
scanner (TLS) devices allow for a direct and illumination-
independent measurement of 3D object surfaces (Shan & Toth, 
2008; Vosselman & Maas, 2010). These scanning sensors 
capture a sequence of single range values on a regular spherical 
scan grid and thus accomplish a time-dependent spatial 
scanning of the local environment. Hence, the scene contents as 
well as the sensor platform should be static in order to reach an 
accurate data acquisition. 

For an adequate capturing of dynamic scenes given for instance 
by moving objects or a moving sensor platform, it is essential to 
obtain all and dense 3D information about the local 
environment at the same time. Recent developments show that 
enhanced types of active imaging sensors have started to meet 
these requirements. Suitable for close-range perception, these 
sensors allow for simultaneously capturing a range image and a 
co-registered intensity image while still maintaining high update 
rates (up to 100 releases per second). However, the non-
ambiguity range of these sensors is only several meters and 
depends on the modulation frequency. This problem can 
currently only be tackled by using active imaging sensors based 
on different modulation frequencies (Jutzi, 2009; Jutzi, 2011). 
Besides, the measured intensity strongly depends on the 
wavelength (typically close infrared) of the laser source as well 
as on the surface characteristic. Various studies on range 
imaging focus on hardware and software developments (Lange, 
2000), geometric calibration (Reulke, 2006; Kahlmann et al., 
2007; Lichti, 2008) and radiometric calibration (Lichti, 2008). 

Nowadays, many approaches for capturing single 3D objects are 
still based on the use of coded structured light. In Salvi et al. 
(2004), different strategies for pattern codification are 
summarized and compared. In general, all these strategies are 
based on the idea of projecting a coded light pattern on the 
object surface and viewing the illuminated scene. Such coded 
patterns allow for a simple detection of correspondences 
between image points and points of the projected pattern. These 
correspondences are required to triangulate the decoded points 
and thus obtain the respective 3D information. For real-time 
applications or dynamic scene acquisition, it is essential to 
avoid time-multiplexing methods as these usually depend on the 
successive projection of different binary codes. Very simple 
patterns with inexpensive hardware requirements which are also 
suitable for dynamic scenes can for example be established via 
dot patterns. Using regular dot patterns for measuring surfaces 
of close-range objects by considering the images of several 
CCD cameras has been presented in Maas (1992) and offers 
advantages like redundancy, reliability and accuracy without the 
need of a priori information or human interaction. The idea of 
using dot patterns has further been improved and currently, new 
types of sensors (e.g. the Microsoft Kinect device developed by 
PrimeSense) use random dot patterns of projected infrared 
points for getting reliable and dense close-range measurements 
in real-time. 

Using the new types of active imaging sensors is well-suited for 
dynamic close-range 3D applications, e.g. like the autonomous 
navigation of robots, driver assistance, traffic monitoring or 
tracking of pedestrians for building surveillance. Therefore, it is 
important to further investigate the potentials arising form these 
sensor types. 

In this paper, a method for semi-automatic image-based co-
registration of point cloud data is proposed, as an accurate range 
measurement with a reference target for a large field-of-view is 
technically demanding and can be expensive. For an automatic 
image-based algorithm, various general problems have to be 
tackled, e.g. co-registration, camera calibration, image 
transformation to a common coordinate frame and resampling. 
With the range imaging devices (e.g. PMD [vision] CamCube 
2.0 and Microsoft Kinect) test data is captured and compared to 
reference data derived by a reference device (Leica HDS6000). 
The general framework focuses on an image-based co-
registration of the different data types, where keypoints are 
detected within each data set and the respective transformation 
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parameters are estimated with a RANSAC-based approach to 
camera pose estimation using the Efficient Perspective-n-Point 
(EPnP) algorithm. Additionally, the proposed algorithm can as 
well be used to co-register data derived from different or the 
same ranging devices without adaptations. This allows for 
fusing range data in form of point clouds with different 
densities and accuracy. A typical application could be the 
completion and densification of sparse data with additional data 
in a common coordinate system. After this co-registration, the 
absolute and relative range accuracy of the range imaging 
devices are evaluated by experiments. For this purpose, the data 
sets captured with the test devices over a whole sequence of 
frames are considered and compared to the data set of a 
reference device (Leica HDS6000) transformed to the local 
coordinate frame of the test device. The results are shown and 
discussed for an indoor scene. 

The remainder of this paper is organized as follows. In Section 
2, the proposed approach for an image-based co-registration of 
point clouds and a final comparison of the measured data is 
described. The configuration of the sensors and the scene is 
outlined in Section 3. Subsequently, the captured data is 
examined in Section 4. The performance of the presented 
approach is tested in Section 5. Then, the derived results are 
evaluated and discussed in Section 6 and finally, in Section 7, 
the content of the entire paper is concluded and an outlook is 
given. 

2. METHODOLOGY 

For comparing the data captured with a range imaging device to 
the data captured with a laser scanner which serves as reference, 
the respective data must be transformed into a common 
coordinate frame. Therefore, the change in orientation and 
position, i.e. the rotation and translation parameters between the 
different sensors, has to be estimated. As illustrated in Figure 1, 
it is worth analyzing the data after the data acquisition. 

Figure 1. Processing chain of the proposed approach. 

The laser scanner provides data with high density and high 
accuracy in the full range of the considered indoor scene, 
whereas the range imaging devices are especially suited for 

close-range applications. Hence, the rotation and translation 
parameters can be estimated via 3D-to-2D correspondences 
between 3D points derived from the TLS measurements and 2D 
image points of the respective range imaging sensor. These 3D-
to-2D correspondences are derived via a semi-automatic 
selection of point correspondences between the intensity images 
of the laser scanner and the test device, and built by combining 
the 2D points of the test device with the respective interpolated 
3D information of the laser scanner. In Moreno-Noguer et al. 
(2007) and Lepetit et al. (2009), the Efficient Perspective-n-
Point (EPnP) algorithm has been presented as a non-iterative 
solution for estimating the transformation parameters based on 
such 3D-to-2D correspondences. As the EPnP algorithm takes 
all the 3D-to-2D correspondences into consideration without 
checking their reliability, it has furthermore been proposed to 
increase the quality of the registration results by introducing the 
RANSAC algorithm (Fischler & Bolles, 1981) for eliminating 
outliers and thus reaching a more robust pose estimation. Using 
the estimated transformation parameters, the reference data is 
transformed into the local coordinate frame of the test device. 
This part of the proposed approach is comparable to the coarse 
registration presented in Weinmann et al. (2011). Finally, the 
estimated transformation allows for comparing the captured 
data. 

3. CONFIGURATION 

To validate the proposed methodology, a configuration 
concerning sensors and scene has to be utilized. 

3.1 Sensors 

For the experiments, two different range imaging devices were 
used as test devices and a terrestrial laser scanner as reference 
device. 

3.1.1 Range imaging device - PMD [vision] CamCube 2.0 

With a PMD [Vision] CamCube 2.0, various types of data can 
be captured, namely the range and the intensity, where the 
intensity can be distinguished in active and passive intensity. 
The measured active intensity depends on the illumination 
emitted by the sensor and the passive intensity on the 
background illumination (e.g. sun or other light sources). The 
data can be depicted as image with an image size of 204 x 204 
pixels. A field-of-view of 40° x 40° is specified in the manual. 

Currently, the non-ambiguity which is sometimes called unique 
range is less than 10 m and depends on the tunable modulation 
frequency. This range measurement restriction can be improved 
by image- or hardware-based unwrapping procedures in order to 
operate as well in far range (Jutzi, 2009; Jutzi, 2011). 

For the experiments the hardware-based unwrapping procedures 
were utilized, where modulation frequencies of 18 MHz and 21 
MHz were selected for maximum frequency discrimination. The 
integration time was pushed to the maximum of 40 ms in order 
to gain a high signal-to-noise ratio for the measurement. In this 
case, saturation could appear in close range or arise from object 
surfaces with high reflectivity. All measurement values were 
captured in raw mode. 

3.1.2 Range imaging device - Microsoft Kinect 

The Microsoft Kinect device is a game console add-on which 
captures disparity and RGB images with a frame rate of 30 Hz. 
Originally, the disparity images are used to track full body 
skeleton poses of several players in order to control the game 
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play. The device has a RGB camera, an IR camera and a laser-
based IR projector which projects a known structured light 
pattern of random points onto the scene. IR camera and IR 
projector form a stereo pair. The pattern matching in the IR 
image is done directly on-board resulting in a raw disparity 
image which is read out with 11 bit depth. Both RGB and 
disparity image have image sizes of 640 x 480 pixels. The 
disparity image has a constant band of 8 pixels width at the 
right side which supports speculation (Konolige & Mihelich, 
2010) of a correlation window width of 9 pixels used in the 
hardware-based matching process. For the data examination, 
this band has been ignored, which yields a final disparity image 
size of 632 x 480 pixels.   

Camera intrinsics, baseline and depth offset have been 
calibrated in order to transform the disparities to depth values 
and to register RGB image and depth image. The horizontal 
field-of-view of the RGB camera is with 63.2° wider than the 
field-of-view of the IR camera with 56.2°. Considering the 
stereo baseline of 7.96 cm, known from calibration, the range is 
limited. The Kinect device is based on a reference design (1.08) 
from PrimeSense, the company that developed the system and 
licensed it to Microsoft. In the technical specifications of the 
reference design, an operation range for indoor applications 
from 0.8 to 3.5 m is given. 

 

Figure 2. Range imaging devices: Microsoft Kinect (left) and 
PMD[vision] CamCube 2.0 (right). 

3.1.3 Reference device - Leica HDS6000 

The Leica HDS6000 is a standard phase-based terrestrial laser 
scanner with survey-grade accuracy (within mm range) and a 
field-of-view of 360° x 155°, and the full captured image size is 
2500 x 1076 pixels. Hence, the angular resolution is 
approximately 0.14°.   

3.2 Scene 

A data set of a static indoor scene was recorded with the 
stationary placed sensors mentioned above. In Figure 3, a photo 
of the observed scene is depicted. For the environment no 
reference data concerning the radiometry or geometry was 
available. Hence, the scene is more suited for investigating the 
quality of the test devices at different levels of distance, even 
beyond the sensor specifications, where it will be seen that the 
captured information might eventually still be suitable. 

 

Figure 3. RGB image of the observed indoor scene. 

4. DATA EXAMINATION 

In this section, the semi-automatic feature extraction by an 
operator, the transformation of the data into a common 
coordinate system and finally, the resampling of the data into a 
proper grid is described. 

4.1 Semi-automatic feature extraction 

For an efficient registration process, it has proved to be suitable 
to establish pairs of points, each consisting of a 3D point 
representing information derived from the reference data and a 
2D point representing the image coordinates measured in the 
image information of the test device (Weinmann et al., 2011). 
Based on these 3D-to-2D correspondences, the co-registration 
can be carried out via the Efficient Perspective-n-Point (EPnP) 
algorithm which has recently been presented as a fast and 
accurate approach to pose estimation. 

Hence, the image coordinates of the control points have been 
measured manually and with sub-pixel accuracy in the passive 
intensity image of the test devices, which has been undistorted 
and mapped to the depth image, as well as in the image of the 
reference device. Subsequently, the corresponding 3D object 
coordinates have been determined based on the reference data 
by interpolation as the measured 3D information is only 
available on a regular grid. 

The proposed approach consisting of EPnP and RANSAC has 
been used to estimate the exterior orientation of both test 
devices in relation to the reference data. Table 1 shows the 
resulting reprojection errors, the number of all determined 
control points and the number of control points selected by the 
RANSAC algorithm. The low percentage of utilized control 
points is only slightly influenced by a low quality of the manual 
2D measurement but rather by the range information itself. As 
distinctive 2D control points are selected first which are located 
at corners or blobs, the respective interpolated 3D information 
may abruptly change and thus not always be reliable.  

Number of control points 
 

Reprojection 
error 

[pixel] 
available used 

PMD [vision] 
CamCube 2.0 

0.693 13 7 

Microsoft 
Kinect 

0.328 21 11 

Table 1. Quantity and quality of the utilized control points. 

4.2 Converting range to depth images 

Once the transformation parameters between reference and test 
device are estimated, it is possible to check how 3D points 
measured with the reference device are projected onto the image 
plane of a virtual camera with the same intrinsic parameters as 
the test device. Using homogeneous coordinates, this 
transformation can be formulated as 

 [ ]' | '=Ref Refx K R t X  (1) 

where K is the calibration matrix of the virtual camera, R the 
estimated rotation matrix and t the estimated translation vector. 
If a pixel in this virtual camera image is assigned more than one 
of the 3D points, the mean values of the respective points are 
used. Resulting from this, resampled synthetic depth images can 
be created, which are shown in Figure 4 for using the same 
calibration matrices as those of the two test devices.  
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Figure 4. Synthetic depth images: a) PMD [vision] CamCube 
2.0, b) Microsoft Kinect. 

Due to the given lower angular resolution of the reference 
device (0.14°) in comparison to the test device Microsoft Kinect 
(0.09°), artifacts from resampling can be observed in the 
synthetic depth image in Figure 4b. The test device PMD 
[vision] CamCube 2.0 records the data with an angular 
resolution of 0.20° which is lower than the angular resolution of 
the reference device. For that reason, the synthetic depth image 
in Figure 4a is without artifacts. Thus, the depth values of the 
different devices can easily be compared to the depth values of 
the reference device. 

The absolute accuracy is given by the depth difference  

 ( ', ') ( ', ') ( ', ')∆ = −z Refx y z x y z x y , (2) 

which is calculated by the difference between reference depth 
zRef derived from the reference device and the mean value z  
derived from at least 100 single measurements captured by the 
investigated range imaging device over a time sequence. 

Then, the relative accuracy is given by the standard deviation of 
the depth difference zσ . 

5. ANALYSIS RESULTS 

First over 100 images of the static scene have been captured 
with both fixed devices, and these images are represented by a 
stack of images. Unreliable measurement values, resulting from 
noise effects, yield less than 100 values and have been masked 
out. The remaining reliable measurement values are utilized for 
further analysis. The number of reliable measurements depicted 
by gray values is shown in Figure 5. 

  
a b 

Figure 5. Number of available measurement values: a) PMD 
[vision] CamCube 2.0, b) Microsoft Kinect. 

For the range imaging device PMD [vision] CamCube 2.0, a 
total number of 33835 reliable pixels (81%) meets our 
constraints. For the range imaging device Microsoft Kinect, the 
maximum raw disparity of 2047 (at 11 bits) has been masked 
out additionally, which yields a total number of 104478 reliable 
pixels (34%). 

From the reliable values, the mean and the standard deviation of 
the depth have been calculated.  

5.1 Range imaging device - PMD [vision] CamCube 2.0 

In Figure 6a, the mean depth obtained with the PMD [vision] 
CamCube 2.0 is visualized. Unreliable measurement values, 
which are represented with white color, appear at the polished 
surfaces in the foreground mainly on the left side where the 
incidence angle to the surface is steep, resulting in uncertainties 
(Figure 7a). Further unreliable measurement values can be 
observed on the dark colored and polished doors in the back of 
the room. These outliers occur due to the low reflectivity or 
specular surface characteristic which can result in multipath 
measurements. 

The depth values are spread over an interval from 4.16 to 24.94 
m. Figure 6b shows a histogram of the estimated mean depth. 
Due to a maximum distance to the central wall at the back of the 
room of about 23 m, absolute range values above this distance 
are erroneous. 

 
 

a b 

Figure 6. Mean depth: a) gray-coded image, b) histogram. 

To the mean depth mentioned above, the corresponding 
standard deviation is shown in Figure 7, where most of the 
values are below σ z with 0.5 m. The standard deviation 
increases slightly with depth and a maximum of 4.62 m can be 
observed in the data. 

 
 

a b 

Figure 7. Standard deviation of the depth: a) gray-coded image, 
b) histogram. 

5.2 Range imaging device - Microsoft Kinect 

In Figure 8a, the mean depth obtained with the Microsoft 
Kinect is visualized. Obviously, the operation range has been 
exceeded in the selected scene. Hence, the wall at the back of 
the room is completely missing, because the maximum raw 
disparity values have been filtered out (compare Figure 5b to 
8a). However the remaining depth measurements still show 
varying distances to different rows of chairs indicating the 
rough structure of the scene. The depth values are within an 
interval from 3.61 to 23.86 m (Figure 8b). This statement 
supports a use of this test device for densifying sparse depth 
measurements far beyond the sensor specification.  

The object size with its surface direction, where the pattern is 
projected on, and the correlation window size lead to limitations 
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with respect to the spatial resolution of the depth image. For 
instance, there is no clear partition in depth for the more distant 
rows of chairs compared to the PMD [vision] CamCube 2.0, 
where depth stepping of rows can be resolved up to the last row. 

 
 

a b 

Figure 8. Mean depth: a) gray-coded image, b) histogram. 

As can be seen in Figure 9a, the standard deviation increases 
with depth, where most of the values are below zσ with 0.2 m 
and a maximum of 1.41 m is given. 

  
a b 

Figure 9. Standard deviation of the depth: a) gray-coded 
image, b) histogram. 

6. EVALUATION AND DISCUSSION 

Finally, the derived depth differences are evaluated and 
discussed by calculating the mean depth and the standard 
deviation of the depth. In Figure 10, the depth differences per 
pixel are shown and in Figure 11, the corresponding density 
distributions are depicted. 

  
a b 

Figure 10. Depth difference between the data of reference and 
test device: a) PMD [vision] CamCube 2.0, b) 
Microsoft Kinect. 

Homogenous areas can be stated for the PMD [vision] 
CamCube 2.0 in Figure 10a. These areas represent a systematic 
range shift, where the range measurement tends to be too close 
to the sensor.  

Concerning the reliable pixels over the scene depth, 25109 
depth difference values (74%) are within the interval [-1,0] m. 
The standard deviation of the depth difference might depend on 
the signal-to-noise ratio of the measurement. Due to the inverse 
square law concerning range dependency of the received light 

power, the estimated mean value in Figure 12a follows this 
trend. 

 
a 

 
b 

Figure 11. Density distribution (blue dotted) and mean (red 
solid) of depth z versus depth difference ∆ z: a) 
PMD [vision] CamCube 2.0, b) Microsoft Kinect. 

Furthermore, concentrical rings can be observed within the 
gray-coded image in Figure 10a. These artifacts might be 
caused by inhomogeneous areal illumination by the photodiode 
arrays, which results in range measurement inaccuracies due to 
the varying signal-noise-ratio of the range measurement. 

 
a 

 
b 

Figure 12. Density distribution (blue dotted) and mean (red 
solid) of depth z versus standard deviation of the 
depth difference σ z: a) PMD [vision] CamCube 
2.0, b) Microsoft Kinect. 

The Microsoft Kinect is difficult for interpretation, as no 
systematic error can be detected. Furthermore, a low point 
density is given at depths above 19 m, which could be 
interpreted as limitation of the device. Concerning the scene 
contents, only the four nearest rows of chairs can be recognized 
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within the image in Figure 10b. This is even more clearly 
presented within the density distribution in Figure 11b, 
following the vertical direction. Concerning the reliable pixels, 
18322 depth difference values (17.5%) are within the interval [-
3,0] m. The mean value depicted in Figure 12b shows the 
standard deviation of the depth difference, which could be 
roughly generalized. Transferring this information, it could be 
interpreted that for instance at a depth of 10 m a measurement 
deviation of approximately 0.2 m can be expected and at 15 m a 
measurement deviation of approximately 0.5 m. 

7. CONCLUSION AND OUTLOOK 

In this paper, a semi-automatic approach for co-registration of 
data captured by range imaging devices with different 
configurations has been proposed. This allows for evaluating 
the absolute and relative accuracy of the range imaging devices. 
After registration, the depth difference and the standard 
deviation of the depth difference have been estimated for two 
range imaging devices, namely Microsoft Kinect and PMD 
[vision] CamCube 2.0. 

Based on the established 3D-to-2D correspondences, the data 
captured with the test devices can be used to complete or 
densify sparse data captured with a reference device. Even 
more, the point clouds captured with both devices do not 
necessarily have to provide the same density or accuracy. 
Hence, the test devices provide additional information about the 
local environment even beyond the sensor specifications, e.g. 
the different rows of chairs can still be distinguished and the 
rough structure of the scene can be recognized. However, in this 
case, the measured 3D coordinates are significant less accurate 
for the Microsoft Kinect whereas for the PMD [vision] 
CamCube 2.0, hardware-based unwrapping procedures using 
different modulation frequencies yield a measurement accuracy 
which approximately remains on a constant and relatively low 
level. 

Concerning the utilized data, it can be stated that the intensity 
of the test data derived from the Microsoft Kinect not always 
matches to the reference data, due to the different wavelengths 
of the devices. For a fully automatic approach, these different 
characteristics will cause that the automatic detection of the 
point correspondences will fail. 

In contrast to this, test data derived from the PMD [vision] 
CamCube 2.0 matches sufficiently to the reference data. First 
investigations show that an automatic registration between the 
different data types can reliably be established via keypoint 
detectors, e.g. by using SIFT features (Lowe, 2004). However, 
it has to be mentioned that this device shows limitations arising 
from its image size, but it can be expected that this will be 
improved in close future. 

Not yet investigated, another straightforward approach might be 
to consider the texture given by the range image instead of the 
above mentioned intensity image, because the geometric aspects 
are invariant to the utilized wavelength. However, the nearly 
monostatic configuration of the PMD [vision] CamCube 2.0 
and the bistatic configuration of the Microsoft Kinect while 
capturing the data might lead to inconsistencies within the range 
image and this could be critical for processing. 

The promising results of this paper show that the presented 
methodology has a high potential for automated co-registration 
of data captured with ranging devices which show different 
configurations concerning the measurement principle, point 
density and range accuracy. 
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