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ABSTRACT:

Currently, enhanced types of active range imaging devices are available for capturing dynamic scenes. By using intensity and range
images, data derived from different or the same range imaging devices can be fused. In this paper, an automatic image-based co-
registration methodology is presented which uses a RANSAC-based scheme for the Efficient Perspective-n-Point (EPnP) algorithm.
For evaluating the methodology, two different types of range imaging devices have been investigated, namely Microsoft Kinect and
PMD [vision] CamCube 2.0. The data sets captured with the test devices have been compared to a reference device with respect to
the absolute and relative accuracy. As the presented methodology can cope with different configurations concerning measurement
principle, point density and range accuracy, it shows a high potential for automated data fusion for range imaging devices.

Nowadays, many approaches for capturing single 3D objects are
still based on the use of coded structured light. In Salvi et al.
5(2004), different strategies for pattern codification are

ummarized and compared. In general, all these strategies are

still an important topic as this is a crucial step for a detailetg d the id f acti ded light att th
description or recognition of objects within the scene. Most o ased on the idea ot projecting a coded fight patiern on the
ject surface and viewing the illuminated scene. Such coded

the current approaches are based on the use of image or ra’%

1. INTRODUCTION

The capturing of 3D information about the local environment i

data. By using passive imaging sensors like cameras, t ;tsrns _aIIow fo_r ta S|(rjnple_ tdet;efrt]lon O.f (t:o(;res;t)tonde%c]es
respective 3D information is obtained indirectly via textured etween image points and points of the projected pattern. 1hese

images and stereo- or multiple-view analysis with a highcorrespondenc_es are requwe_d to trla_ngulate _the decoded pomts
d thus obtain the respective 3D information. For real-time

computational effort. These procedures are widely used, b licati d i isiti i tial t
they depend on scenes with adequate illumination condition@PP!ICations or dynamic scene acquisition, 1t 1S essential to

and opaque objects with textured surface. Besides, the distanc:aevsOId tlrr_le-multl_plet?(mg rr;e(tjhftf)ds ats tt)hese USU(?”y d\(ipend on tlhe
between sensor and object, between the different viewpoints gHccessive projection ot différent binary codes. Very simpie
an imaging sensor and between the sensors of the stereo rig,pﬁttems with inexpensive hardware requirements which are also

the case of using a stereo camera, should be sufficiently Iarge? Itable for dyngmlc scenes can for example be est_abllshed via
order to obtain reliable 3D information. ot patterns. Using regular dot patterns for measuring surfaces

of close-range objects by considering the images of several
In contrast to the photogrammetric methods, terrestrial las€€CD cameras has been presented in Maas (1992) and offers
scanner (TLS) devices allow for a direct and illumination-advantages like redundancy, reliability and accuracy without the
independent measurement of 3D object surfaces (Shan & Totheed of a priori information or human interaction. The idea of
2008; Vosselman & Maas, 2010). These scanning sensousing dot patterns has further been improved and currently, new
capture a sequence of single range values on a regular spheriggdes of sensors (e.g. the Microsoft Kinect device developed by
scan grid and thus accomplish a time-dependent spatirimeSense) use random dot patterns of projected infrared
scanning of the local environment. Hence, the scene contents pasints for getting reliable and dense close-range measurements
well as the sensor platform should be static in order to reach am real-time.

accurate data acquisition. . L ) . .
Using the new types of active imaging sensors is well-suited for

For an adequate capturing of dynamic scenes given for instandgnamic close-range 3D applications, e.g. like the autonomous
by moving objects or a moving sensor platform, it is essential taavigation of robots, driver assistance, traffic monitoring or
obtain all and dense 3D information about the localtracking of pedestrians for building surveillance. Therefore, it is
environment at the same time. Recent developments show thatportant to further investigate the potentials arising form these
enhanced types of active imaging sensors have started to meensor types.

these requirements. Suitable for close-range perception, theFe thi thod _aut fic i based
sensors allow for simultaneously capturing a range image and iy this paper, a method for semi-automatic image-based co-

co-registered intensity image while still maintaining high updatéeg's'[ratlon of point cloud data is proposed, as an accurate range
rates (up to 100 releases per second). However, the nomeasgrement wnhgreference target fora_large field-of-view is
ambiguity range of these sensors is only several meters alﬁ(achmcally demand_lng and can be expensive. For an automatic
depends on the modulation frequency. This problem CaHnage-based algorlthm, various general prob_lems_ have_ to be
currently only be tackled by using active imaging sensors basétad(l?d' et_.g. tco-reglstratlon, fﬁm?raf callbra(tjlon, |mf|;l_ge
on different modulation frequencies (Jutzi, 2009; Jutzi, 2011).@nS ormation 10 a common coordinate frame and resampiing.
Besides, the measured intensity strongly depends on t\@['th the range imaging devices (e_.g. PMD [vision] CamCube
wavelength (typically close infrared) of the laser source as we -0 and Microsoft I_<|nect) test data is captu_red an_d compared to
as on the surface characteristic. Various studies on ran ference data derived by a reference device (Leica HDS6000).

imaging focus on hardware and software developments (Lang e general framework focuses on an image-based co-

2000), geometric calibration (Reulke, 2006; Kahlmann et al”re‘gistration of the different data types, where keypoints are

2007; Lichti, 2008) and radiometric calibration (Lichti, 2008). detected within each data set and the respective transformation
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parameters are estimated with a RANSAC-based approach ttose-range applications. Hence, the rotation and translation
camea pose estimation using the Efficient Perspective-n-Poinparameters can be estimated via 3D-to-2D correspondences
(EPnP) algorithm. Additionally, the proposed algorithm can adetween 3D points derived from the TLS measurements and 2D
well be used to co-register data derived from different or thémage points of the respective range imaging sensor. These 3D-
same ranging devices without adaptations. This allows foto-2D correspondences are derived via a semi-automatic
fusing range data in form of point clouds with different selection of point correspondences between the intensity images
densities and accuracy. A typical application could be thef the laser scanner and the test device, and built by combining
completion and densification of sparse data with additional datdne 2D points of the test device with the respective interpolated
in a common coordinate system. After this co-registration, th8D information of the laser scanner. In Moreno-Noguer et al.
absolute and relative range accuracy of the range imagin@007) and Lepetit et al. (2009), the Efficient Perspective-n-
devices are evaluated by experiments. For this purpose, the d&aint (EPnP) algorithm has been presented as a non-iterative
sets captured with the test devices over a whole sequence saflution for estimating the transformation parameters based on
frames are considered and compared to the data set ofsach 3D-to-2D correspondences. As the EPnP algorithm takes
reference device (Leica HDS6000) transformed to the locadll the 3D-to-2D correspondences into consideration without
coordinate frame of the test device. The results are shown amtiecking their reliability, it has furthermore been proposed to
discussed for an indoor scene. increase the quality of the registration results by introducing the
RANSAC algorithm (Fischler & Bolles, 1981) for eliminating
Bl{tliers and thus reaching a more robust pose estimation. Using
fAle estimated transformation parameters, the reference data is
fPansformed into the local coordinate frame of the test device.

The remainder of this paper is organized as follows. In Sectio
2, the proposed approach for an image-based co-registration
point clouds and a final comparison of the measured data

outlined in Section 3. Subsequently, the captured data i
examined in Section 4. The performance of the presente
approach is tested in Section 5. Then, the derived results
evaluated and discussed in Section 6 and finally, in Section 7,
the content of the entire paper is concluded and an outlook is
given.

gistration presented in Weinmann et al. (2011). Finally, the
stimated transformation allows for comparing the captured

3. CONFIGURATION

To validate the proposed methodology, a configuration
2. METHODOLOGY concerning sensors and scene has to be utilized.

For comparing the data captured with a range imaging device t:g)
. . .1 Sensors
the data captured with a laser scanner which serves as reference,
the respective data must be transformed into a commokRor the experiments, two different range imaging devices were
coordinate frame. Therefore, the change in orientation andsed as test devices and a terrestrial laser scanner as reference
position, i.e. the rotation and translation parameters between tldevice.
different sensors, has to be estimated. As illustrated in Figure 1,
it is worth analyzing the data after the data acquisition. 3.1.1 Rangeimaging device- PMD [vision] CamCube 2.0

With a PMD [Vision] CamCube 2.0, various types of data can
Reference data Test data be captured, namely the range and the intensity, where the
intensity can be distinguished in active and passive intensity.

< Data Acquisition The measured active intensity depends on the illumination
emitted by the sensor and the passive intensity on the
l l background illumination (e.g. sun or other light sources). The
i i i data can be depicted as image with an image size of 204 x 204
( Semi-automatic Feature Extraction pixels. A field-of-view of 40° x 40° is specified in the manual.

Currently, the non-ambiguity which is sometimes called unique

range is less than 10 m and depends on the tunable modulation

frequency. This range measurement restriction can be improved

by image- or hardware-based unwrapping procedures in order to
operate as well in far range (Jutzi, 2009; Jutzi, 2011).

( Registration >

3D Point Estimation

For the experiments the hardware-based unwrapping procedures
were utilized, where modulation frequencies of 18 MHz and 21
MHz were selected for maximum frequency discrimination. The
integration time was pushed to the maximum of 40 ms in order
to gain a high signal-to-noise ratio for the measurement. In this
) case, saturation could appear in close range or arise from object

Transformation

A\ 4

surfaces with high reflectivity. All measurement values were

< Comparison/Evaluation
captured in raw mode.

3.1.2 Rangeimaging device - Microsoft Kinect

Figure 1. Processing chain of the proposed approach. . ) . )
The Microsoft Kinect device is a game console add-on which

The laser scanner provides data with high density and higbaptures disparity and RGB images with a frame rate of 30 Hz.
accuracy in the full range of the considered indoor scen®riginally, the disparity images are used to track full body
whereas the range imaging devices are especially suited fekeleton poses of several players in order to control the game
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play. The device has a RGB camera, an IR camera and a laser- 4, DATA EXAMINATION

basel IR projector which projects a known structured light

pattern of random points onto the scene. IR camera and IR this section, the semi-automatic feature extraction by an
projector form a stereo pair. The pattern matching in the IRperator, the transformation of the data into a common
image is done directly on-board resulting in a raw disparitcoordinate system and finally, the resampling of the data into a
image which is read out with 11 bit depth. Both RGB andproper grid is described.

disparity image have image sizes of 640 x 480 pixels. The

disparity image has a constant band of 8 pixels width at thé.1 Semi-automatic feature extraction

right side which supports speculation (Konolige & Mihelich, £ o efficient registration process, it has proved to be suitable
2010) of a correlation window width of 9 pixels used in thet0 establish pairs of points, each consisting of a 3D point

ha}rdware-based mgtching process. For th? datg ex"?‘mi,ﬂ‘"‘tiq‘%'presenting information derived from the reference data and a
this band has been ignored, which yields a final disparity imaggp hoint representing the image coordinates measured in the

size of 632 x 480 pixels. image information of the test device (Weinmann et al., 2011).

Camera intrinsics, baseline and depth offset have bedpased on these 3D-to-2D correspondences, the co-registration
calibrated in order to transform the disparities to depth valuegan be carried out via the Efficient Perspective-n-Point (EPnP)
and to register RGB image and depth image. The horizont&@lgorithm which has recently been presented as a fast and
field-of-view of the RGB camera is with 63.2° wider than theaccurate approach to pose estimation.

field-of-view of the IR camera with 56.2°. Considering the yonce the image coordinates of the control points have been

stereo baselin.e of 7'96, cm, known from calibration, thg range heasured manually and with sub-pixel accuracy in the passive
limited. The Kinect device is based on a reference design (1.0%,}

) ensity image of the test devices, which has been undistorted
from PrimeSense, the company that developed the system agf:lj

. . ) ) s d mapped to the depth image, as well as in the image of the
licensed it to Microsoft. In the technical specifications of thereference device. Subsequently, the corresponding 3D object

][eference design, an operation range for indoor applicationg,q ginates have been determined based on the reference data
rom 0.8 to 3.5 m is given. by interpolation as the measured 3D information is only
available on a regular grid.

The proposed approach consisting of EPnP and RANSAC has

been used to estimate the exterior orientation of both test

devices in relation to the reference data. Table 1 shows the

. : resulting reprojection errors, the number of all determined

@ control points and the number of control points selected by the
RANSAC algorithm. The low percentage of utilized control

points is only slightly influenced by a low quality of the manual
Figure 2. Range imaging devices: Microsoft Kinect (left) and2D measurement but rather by the range information itself. As

PMD]Jvision] CamCube 2.0 (right). distinctive 2D control points are selected first which are located

at corners or blobs, the respective interpolated 3D information

3.1.3 Referencedevice- Leica HDS6000 may abruptly change and thus not always be reliable.

The Leica HDS6000 is a standard phase-based terrestrial laser Reprojection | Number of control points

scanner with survey-grade accuracy (within mm range) and |a error ilabl d

field-of-view of 360° x 155°, and the full captured image size ig [pixel] avaraple use

2500 x 1076 pixels. Hence, the angular resolution i$PMD [vision]

approximately 0.14°. CamCube 2.0 0.693 13 7
Microsoft

3.2 Scene Kinect 0.328 21 11

A data set of a static indoor scene was recorded with thgapie 1. Quantity and quality of the utilized control points.
stationary placed sensors mentioned above. In Figure 3, a photo

of the observed scene is depicted. For the environment np
reference data concerning the radiometry or geometry was
available. Hence, the scene is more suited for investigating tHence the transformation parameters between reference and test
quality of the test devices at different levels of distance, eveflevice are estimated, it is possible to check how 3D points

beyond the sensor specifications, where it will be seen that tigeasured with the reference device are projected onto the image

2 Converting rangeto depth images

captured information might eventually still be suitable. plane of a virtual camera with the same intrinsic parameters as
i E— _ the test device. Using homogeneous coordinates, this
?W : Z transformation can be formulated as
Rl | ‘

X'ee = K[RIt] X g (1)

whereK is the calibration matrix of the virtual camefa,the
estimated rotation matrix artdhe estimated translation vector.

If a pixel in this virtual camera image is assigned more than one
of the 3D points, the mean values of the respective points are
used. Resulting from this, resampled synthetic depth images can
be created, which are shown in Figure 4 for using the same
calibration matrices as those of the two test devices.

Figure 3. RGB image of the observed indoor scene.
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5.1 Rangeimaging device- PMD [vision] CamCube 2.0

0; 0
ol 20 100 il In Figure 6a, the mean depth obtained with the PMD [vision]
‘ . s - s CamCube 2.0 is visualized. Unreliable measurement values,
1°°- E ‘ A E which are represented with white color, appear at the polished
. 10 300 10 . . .

150l surfaces in the foreground mainly on the left side where the
> 400 ° incidence angle to the surface is steep, resulting in uncertainties
20510015520 ~° 100 200 300 400 500 660 O (Figure 7a). Further unreliable measurement values can be
observed on the dark colored and polished doors in the back of

a b the room. These outliers occur due to the low reflectivity or

Figure 4. Synthetic depth images: a) PMD [vision] CamCubéPecular surface characteristic which can result in multipath

2.0, b) Microsoft Kinect. measurements.

Due to the given lower angular resolution of the referencd he depth values are spread over an interval from 4.16 to 24.94

device (0.14°) in comparison to the test device Microsoft Kinect- Figure 6b shows a histogram of the estimated mean depth.
(0.09°), artifacts from resampling can be observed in th&Ue to a maximum distance to the central wall at the back of the

synthetic depth image in Figure 4b. The test device PMIyoom of about 23 m, absolute range values above this distance

[vision] CamCube 2.0 records the data with an angulaf’€ €rroneous.
resolution of 0.20° which is lower than the angular resolution of
the reference device. For that reason, the synthetic depth im
in Figure 4a is without artifacts. Thus, the depth values of tl
different devices can easily be compared to the depth values *

1400

1200

1000

the reference device. - T E 800

0 g 600

The absolute accuracy is given by tiepth difference 150! E oo
= = 5

(XY = 2y (XY )=Z (XY ), p——— (|}

=)

which is calculated by the difference between reference depth
Zrs derived from the reference device and the mean value a
derived from at least 100 single measurements captured by t?‘?gure 6. Mean depth: a) gray-coded image, b) histogram.
investigated range imaging device over a time sequence.

. o o To the mean depth mentioned above, the corresponding
Then, the relative accuracy is given by sfendard deviation of  giangard deviation is shown in Figure 7, where most of the

the depth difference o, . values are belowo, with 0.5 m. The standard deviation

increases slightly with depth and a maximum of 4.62 m can be
5. ANALYSISRESULTS observed in the data.

First over 100 images of the static scene have been captt " 1800

with both fixed devices, and these images are represented t | 1600

stack of images. Unreliable measurement values, resulting fr s el gﬁii

noise effects, yield less than 100 values and have been mas N gt ] I £ ool

out. The remaining reliable measurement values are utilized | | f— By |° $ oo

further analysis. The number of reliable measurements depic ., BT § 600

by gray values is shown in Figure 5. g o2 400
200 50 100 150 200 00 0

h ' “ il ‘ 75
f i “ 9; " Figure 7. Standard deviation of the depth: a) gray-coded image,

gromcam S LSRN 5.2 Rangeimaging device - Microsoft Kinect

number of images
number of images

b In Figure 8a, the mean depth obtained with the Microsoft
Kinect is visualized. Obviously, the operation range has been

Figure 5. Number of available measurement values: a) PMBxceeded in the selected scene. Hence, the wall at the back of
[vision] CamCube 2.0, b) Microsoft Kinect. the room is completely missing, because the maximum raw

For the range imaging device PMD [vision] CamCube 2.0, disparity values have been filtered out (compare Figure 5b to

total number of 33835 reliable pixels (81%) meets our a). However the remaining depth measurements still show

. . - - . : varying distances to different rows of chairs indicating the
constraints. For the range imaging device Microsoft Kinect, the =
. . ) . rough structure of the scene. The depth values are within an
maximum raw disparity of 2047 (at 11 bits) has been maske! . .
. - . ; ihterval from 3.61 to 23.86 m (Figure 8b). This statement
out additionally, which yields a total number of 104478 reliable : . I
pixels (34%) supports a use of this test device for densifying sparse depth

measurements far beyond the sensor specification.
From the reliable values, the mean and the standard deviation

the depth have been calculated, e object size with its surface direction, where the pattern is

projected on, and the correlation window size lead to limitations
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with respect to the spatial resolution of the depth image. Fgoower, the estimated mean value in Figure 12a follows this
instance, there is no clear partition in depth for the more distaritend.
rows of chairs compared to the PMD [vision] CamCube 2.0,
where depth stepping of rows can be resolved up to the last row.

-

Ry 4 g

| £ 5000
l- -1 . R E 54000
o s e | <‘1u g

100 200 300 400 500 600

a b [— mean(a,)]
Figure 8. Mean depth: a) gray-coded image, b) histogram.

As can be seen in Figure 9a, the standard deviation increases
with depth, where most of the values are beloywith 0.2 m
and a maximum of 1.41 m is given.

5000

4000

2
@

100

s ' o H
200{{'5} ;,ﬁ P 5 Figure 11. Density distribution (blue dotted) and mean (red
300 © %, T e ;Ezooo solid) of depthz versus depth differencé ,: a)
a2 PMD [vision] CamCube 2.0, b) Microsoft Kinect.

400 1000

8
°

Furthermore, concentrical rings can be observed within the
s tml : : gray-coded image in Figure 10a. These artifacts might be
a b caused by inhomogeneous areal illumination by the photodiode
arrays, which results in range measurement inaccuracies due to
Figure 9. Standard deviation of the depth: a) gray-codethe varying signal-noise-ratio of the range measurement.
image, b) histogram.

100 200 300 400 500 600

2.0

6. EVALUATION AND DISCUSSION [ mesntes)]

15

Finally, the derived depth differences are evaluated and
discussed by calculating the mean depth and the standard
deviation of the depth. In Figure 10, the depth differences per
pixel are shown and in Figure 11, the corresponding density 03
distributions are depicted.

az [m]
I
o

0.0

0

o 2.0,

— mean(oy,)

300 15

100 200 300 400 500 600

a b
Figure 10. Depth difference between the data of reference and ooled b . - .
test device: a) PMD [vision] CamCube 2.0, b) ziml

Microsoft Kinect. b

Homogenous areas can be stated for the PMD [vision']:igure 12. Density distribution (blue dotted) and mean (red

CamCube 2.0 in Figure 10a. These areas represent a systematic solid) of depthz versus standard deviation of the

range shift, where the range measurement tends to be too close depth differenceo;: @) PMD [vision] CamCube
to the sensor. 2.0,b) Microsoft Kinect.

Concerning the reliable pixels over the scene depth, 25108h€ Microsoft Kinect is difficult for interpretation, as no
depth difference values (74%) are within the interval [-1,0] mSystematic error can be detected. Furthermore, a low point
The standard deviation of the depth difference might depend di#ensity is given at depths above 19 m, which could be
the signal-to-noise ratio of the measurement. Due to the inverdaterpreted as limitation of the device. Concerning the scene
square law concerning range dependency of the received ”gﬁvt')ntents, only the four nearest rows of chairs can be recognized
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within the image in Figure 10b. This is even more clearly ACKNOWLEDGEMENT
preented within the density distribution in Figure 11b,
following the vertical direction. Concerning the reliable pixels,
18322 depth difference values (17.5%) are within the interval [
3,0] m. The mean value depicted in Figure 12b shows th
standard deviation of the depth difference, which could b
roughly generalized. Transferring this information, it could be>
interpreted that for instance at a depth of 10 m a measureme’ﬁ
deviation of approximately 0.2 m can be expected and at 15 m a

The authors would like to thank Eva Richter from the Geodetic

Institute at KIT for assistance during the measurement
ampaign. Furthermore, we would like to thank Nicolas Burrus

rom Robotics Lab, University Carlos Ill, Spain for his open-
ource software package that helped us capturing the Microsoft
itnect data.

measurement deviation of approximately 0.5 m. REFERENCES
Fischler, M. A., Bolles, R. C., 1981. Random sample
7. CONCLUSION AND OUTLOOK consensus: A paradigm for model fitting with applications to

) ) ) ) ) image analysis and automated cartography. Communications of
In this paper, a semi-automatic approach for co-registration gf,e AcMm 24 (6), pp. 381-395.

data captured by range imaging devices with differenglutzi B.. 2009
configurations has been proposed. This allows for evalua’[ingang('3 - '

the absolute and relative accuracy of the range imaging dechosselman, G. (Eds). Laserscanning 2009. International

After registration, the depth difference and the standar rchives of Photogrammetry and Remote Sensing 38 (Part
deviation of the depth difference have been estimated for tW§/W8) pp. 265-270.

range imaging devices, namely Microsoft Kinect and IDMDJutzi, B., 2011. Extending the range measurement capabilities
[vision] CamCube 2.0.

of modulated range imaging devices by time-frequency-
Based on the established 3D-to-2D correspondences, the damaltiplexing. AVN - Allgemeine Vermessungs-Nachrichten.
captured with the test devices can be used to complete &ahimann, T., Remondino, F., Guillaume, S., 2007. Range
densify sparse data captured with a reference device. Evémaging technology: new developments and applications for
more, the point clouds captured with both devices do nopeople identification and tracking. In: Beraldin, J.-A,,
necessarily have to provide the same density or accuraciRemondino, F., Shortis, M. R. (Eds.) Videometrics IX, SPIE
Hence, the test devices provide additional information about theroceedings Vol. 6491, 64910C.

local environment even beyond the sensor specifications, e.gonolige, K., Mihelich, P., 2010. Technical description of
the different rows of chairs can still be distinguished and thé&inect calibration, http://www.ros.org/wiki/kinect_calibration
rough structure of the scene can be recognized. However, in thigchnical, last access in May 2011.

case, the measured 3D coordinates are significant less accurgighge, R., 2000. 3D time-of-flight distance measurement with
for the Microsoft Kinect whereas for the PMD [vision] custom solid-state image sensors in CMOS/CCD-technology.
CamCube 2.0, hardware-based unwrapping procedures usipgpD thesis, University of Siegen.

different modulation frequencies yield a measurement accuraqyspetit, V., Moreno-Noguer, F., Fua, P., 2009. EPnP: An
which approximately remains on a constant and relatively lowyccyrate O(n) solution to the PnP problem. International
level. Journal of Computer Vision 81 (2), pp. 155-166.

Concerning the utilized data, it can be stated that the intensiyjchti, D. D., 2008. Self-Calibration of a 3D Range Camera.
of the test data derived from the Microsoft Kinect not alwaygnternational Archives of Photogrammetry, Remote Sensing and
matches to the reference data, due to the different wavelengtfgatial Geoinformation Sciences 37 (Part B5), pp. 927-932.
of the devices. For a fully automatic approach, these differertowe, D. G., 2004. Distinctive image features from scale-
characteristics will cause that the automatic detection of th&variant keypoints. International Journal of Computer Vision
point correspondences will fail. 60 (2), pp. 91-110.

Maas, H.-G., 1992. Robust automatic surface reconstruction

In contrast to this, test dat_a_derived from the PMD [ViSior_‘]with structured light. International Archives of Photogrammetry
CamCube 2.0 matches sufficiently to the reference data. Firgh y pemote Sensing 29 (Part B5), pp. 709-713

investigations show that an automatic registration between tqﬁoreno-Noguer E. Lepetit, V., Fua, P., 2007. Accurate
different data types can reliably be established via keypomﬁoniterative O(r'1) stnlution tc’) thlé PnF; prablem .IEEE 11th
detectors, e.g. by using SIFT features (Lowe, 2004). Howeve[ '
it has to be mentioned that this device shows limitations arisin
from its image size, but it can be expected that this will b

improved in close future.

Investigations on ambiguity unwrapping of
images. In: Bretar, F., Pierrot-Deseilligny, M.,

hternational Conference on Computer Vision, pp. 1-8.

eulke, R., 2006. Combination of distance data with high
resolution images. In: Maas, H.-G., Schneider, D. (Eds.) ISPRS
Commission V Symposium: Image Engineering and Vision
Not yet investigated, another straightforward approach might b®letrology, International Archives of Photogrammetry, Remote
to consider the texture given by the range image instead of ttf&ensing and Spatial Geoinformation Sciences 36 (Part B).
above mentioned intensity image, because the geometric aspestslvi, J., Pages, J., Batlle, J., 2004. Pattern codification
are invariant to the utilized wavelength. However, the nearlgtrategies in structured light systems. Pattern Recognition 37
monostatic configuration of the PMD [vision] CamCube 2.0(4), pp. 827-849.

and the bistatic configuration of the Microsoft Kinect while shan, J., Toth, C.-K., 2008. Topographic Laser Ranging and

capturing the data might lead to inconsistencies within the ranggcanning: Principles and Processing. Boca Raton, FL: Taylor &
image and this could be critical for processing. Francis.

The promising results of this paper show that the presentedosselman, G., Maas, H.-G., 2010. Airbome and Terrestrial
methodology has a high potential for automated co-registratioh2Ser Scanning. Whittles Publishing, Caithness, Scotland, UK.
of data captured with ranging devices which show differentVeinmann, Ma., Weinmann, Mi., Hinz, S., Jutzi, B., 2011. Fast

configurations concerning the measurement principle, poin@nd automatic image-based registration of TLS data. ISPRS
density and range accuracy. Journal of Photogrammetry and Remote Sensing.

124





